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At dissipative boundaries, models of self-organized criticality show peculiar scalings, different from
the bulk ones, in the distributions characterizing avalanches. For Abelian models with Dirichlet bound-
ary conditions, evidence of this is obtained by a mean field approach to semi-infinite sandpiles, and by
numerical simulations in two and three dimensions. On the other hand, within the mean field descrip-
tion, closed Neumann conditions restore bulk scaling exponents also at the border. Numerical results

are-consistent with this property also at finite d.

PACS number(s): 05.40.+j, 05.60.+w, 68.35.Rh, 64.60.Ht

Bak, Tang, and Wiesenfeld (BTW) [1] introduced the
concept of self-organized criticality (SOC) as an explana-
tion of the widespread occurrence in nature of power law
correlations in space and time. Relatively simple au-
tomaton models, inspired by the physics of real sandpiles
[2], were shown by BTW to possess the remarkable prop-
erty of evolving stochastically into a critical, stationary
state, independent of initial conditions. Such sandpile
models can be applied to very diverse phenomena, rang-
ing from earthquakes [3] to magnetic domain patterns
(4].

An essential requirement of any sandpile model is the
capability of dissipation at the borders, which allows the
system to reach the critical state by elimination of the
“sand” injected at random in the system. So far, in spite
of the clear importance played by boundary conditions in
SOC, very little attention has been paid to the possible
consequences of the borders on critical behavior. In the
context of standard critical phenomena, inhomogeneities,
of which a boundary surface is a typical example, are well
known to produce exponents different from those describ-
ing bulk singularities [5]. The boundary magnetization of
a semi-infinite spin system, for example, responds to the
bulk field with a susceptibility x;~[(T—T,)/T,| '" for
T—T,, with y, different from the bulk susceptibility ex-
ponent ¥ [S]. This implies that the surface magnetic
field, on which the boundary free energy depends, has a
peculiar scaling dimension, different from that of the bulk
field.

In the present paper we provide evidence that one can
clearly distinguish between bulk and surface scaling ex-
ponents in SOC systems, in the same way as in equilibri-
um spin models. In spite of the considerable recent ac-
tivity on SOC, the general possibility of peculiar scalings
at the boundary has not been appreciated. In a recent
study [6] of a particular one-dimensional (1D) SOC mod-
el, evidence was produced of different bulk and edge ex-
ponents, as well as multiscaling behavior, for a “through
distribution.” Most recently, boundary height-height
correlations were computed for the stationary state of an
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Abelian sandpile model (ASM) [7]. Based on conformal
invariance it was shown that the exponents are the same
as for the corresponding bulk correlations. This identity
can be attributed to the particular (energy) zero-state
Potts operator involved [7]. Indeed, an exact correspon-
dence exists between the statistics of this last model and
the stationary critical state [8]. However, such a map-
ping does not allow discussion of the avalanche distribu-
tion exponents, which determine how this state responds
to the external flux. The values of these last exponents
remain an open theoretical challenge. As we show below,
it is indeed in avalanche distributions that novel bound-
ary scaling behavior is revealed.

We first consider the ASM, for which much analytical
and numerical information is already available [8-10].
At each site i of a finite box A in the d-dimensional hy-
percubic lattice, an integer variable z;=0,1,2,3,..., is
defined. If z; <2d —1 for all i, the configuration is stable.
As soon as some z; =2d, a toppling occurs, so that
z;—z;—A,;, where A is the Laplacian matrix: A, =2d
and A, =—1 if I5m and I, m are nearest neighbors, and
0, otherwise. For jEJA, the boundary of A, the stan-
dard condition, allowing sand grain elimination, is of the
Dirichlet form: A;;=2d for jE€dA. Of course, nothing
prevents us from considering closed, Neumann boundary
conditions (BC’s), i.e., A;;=2d —1 for j belonging to a
subset of dA, e.g., one side or face. For such j’s the sta-
bility condition then becomes z; <2d —2. Closed BC’s
alone do not allow sand elimination, which takes place
through the other Dirichlet faces. The dynamics is as
follows. Starting from a stable configuration, a site k is
selected at random and a grain is added: z; —z;, +1. If
the configuration remains stable, no avalanche is pro-
duced, and a new grain is injected. If the site becomes
unstable, it topples. Other sites might become unstable
as a consequence of this first toppling, and, in a second
stage, one lets all such sites topple. This proceeds stage
by stage until a stable configuration is eventually reached.
During the avalanche, time may be measured in units of
the interval between successive checks of unstable points.
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Avalanches are thus naturally characterized by the dura-
tion ¢, the number of sites topping at least once, s, and
the number of topplings, m. For such quantities, scaling
distributions are expected under stationary conditions
[1,8]. So, if L >>1 is the side length of a cubic A, con-
sistently with finite size scaling (FSS), one finds P(s,L)
~[L ~"™g(s/L? and P(s,»)=~s~" for the probability
density of avalanches involving s sites. d is the fractal di-
mension of the avalanches. Analogously the ¢ and m dis-
tributions scale as ¢t 7> and m T"‘, respectively, in the
infinite system. One can also define a susceptibility [11]

XL)= [ “P(s,Lysds ~LIC7) . (1)

If 6 denotes the average height {z ) of the infinite pile out
of criticality, Eq. (1) and FSS lead to

X(G)NREQ*T)N‘6_60|—w7(2—‘r) , (2)

where R~|0—6.|7" is the average linear size of
avalanches and 6, is the average height at criticality [11].
Thus the susceptibility exponent is y =vd(2— 7).

So far, the determinations of 7, v, and d in the litera-
ture were all based on sampling avalanches starting any-
where in the whole system and thus essentially in the
bulk, but, as shown below, including surface contribu-
tions. We propose to define the analog of a boundary
magnetic susceptibility by sampling only avalanches that
start at the border dA. In analogy with standard critical
phenomena, we expect for these avalanches a P, (s,L),
obeying FSS with 7, and g, possibly different from 7
and g, respectively, and the same d.

One can gain analytical insight into this issue through
a mean field (MF) approach to the ASM in semi-infinite
geometry, which extends and generalizes a recently pro-
posed “reaction rate” method for bulk quantities [12].
The MF approach allows us to treat inhomogeneity in
the simplest 1D setting. The integer index i =1,2,...,
numbers sites starting from the origin of a semi-infinite
chain, and P;; (k=0,1,2,3,...,) represents the proba-
bility that z;=k. The probability that z;,—z,+1 as
consequence of grain injection from the exterior is denot-
ed by A. Reaction rate equations can then be written ex-
pressing the stationary state condition, i.e., the fact that,
at each site, the rate of transitions out of a given height
state exactly balances the rate into the same state. Since
toppling occurs only for z =2, it turns out that the criti-
cal stationary state is the one in which Py, =P,,=1,

. =0 for i >2 and all n. In this state (z)=6,=1. P,,
is in fact the local order parameter. To leading order in
P,, one can put Py, ~t+a,,P,,, k=0,1, where a’s are
suitable coefficients and P;, =O(P3,). So, the following
equations can be obtained eventually:

P

n

h
=_‘§'Pn—lpn+1_—2_(anl+Pn+l)

+(9'—2Pn )(Pn_1+Pn+1)
+1P,(P,_,+P, ;) +h(6—2P,)

+-ZT(P,,_2+2P,,+P,,+2), n>2 (3a)

P,=1P,+(6—1—2P,)P,+h(6—2P, )—ng . (3b)

where for simplicity P; stays for P,; everywhere, and the
a’s have been eliminated by use of a,,+a,;,+1=0
(probability conservation), and 6=~1+a,,P,,+2P,,.
Equations (3a)-(3b) are valid in the case of Dirichlet
BC’s. By disregarding Eq. (3b) and turning to our stan-
dard notations, a translationally invariant solution of Eq.
(3a), with P,, =P,, satisfies

4P3+(1—26+2h)P,—h6=0, @)

which is easily seen to imply P, ~(1)(6—6,), 6= 6, i.e.,
B=1and =93P, /3h~(1)(6—6,)7 !, i, y=1[12]. In-
homogeneous solutions of Egs. (3a) and (3b) are most
easily discussed in terms of y, =0P,, /3h|; —,. One finds
a solution of the form

Xn=x+bexp[—(n—1)q], (5)

with ¢~|6—6,|'/? and x,;~|0—6,|7'% Thus y,=1
vy in the MF, while the behavior of the reciprocal
“penetration length” g reveals directly the expected
v=1[12]. Since d=4 in the MF [12], we conclude that
Tar=2—%1/vd =1, to be compared with the bulk 7=23.
A similar calculation gives 7, with the Neumann BC at
site 1. In this case P, replaces P,; everywhere and Eq.
(3b) is suitably modified. Again a solution of the form (5)
is found, this time with y,=0P,,/3h|,—o~10—6.|7'. A
subleading term proportional to [8—6,|~1/2 is also ob-
tained in Y;. Thus, in the MF closed conditions give
v1=v=1. MF calculations can of course be carried on
also in higher d, yielding the same ¥,’s. A more complete
and detailed account of these MF results will be given
elsewhere.

We performed extensive numerical investigations of s
and ¢ distributions for avalanches starting at both Diri-
chlet and Neumann boundaries, in 2D (16 <L <256) and
3D (16 =L <40). In the simulations the piles were kept
critical by injecting grains over the whole system, thus
making it unusually difficult to obtain good statistics on
boundary events. Figure 1 shows data for Py, and P
with the Dirichlet BC in 2D. In this and the other cases
also, time distribution data and radii of gyration of
avalanches were recorded. Direct and data collapse fits
allow us to estimate consistently 7y, =1.52+0.05 and

d=1.9710.06, to be compared with 7=1.211+0.02 and
d =1.96+0.06, as obtained from our analysis in the bulk.
Our bulk results agree rather well with determinations in
the literature [10]. The time distribution exponent of
border avalanches can be estimated as yg,,=1.8110.04,
to be compared with the bulk y =1.32+0.04.

On the basis of scaling arguments normally applied to
the bulk, we expect =z, =d(T4,—1)/(Yge—1)
=1.26+0.08, where z,,, is the exponent relating the
duration of border avalanches with their linear range.
Our determination of z, is consistent with the estimated
(z/d =0.607+0.040 [10]) and conjectured (z =3 [8]) bulk
values. This consistency can be understood. Indeed, in
2D the bulk z is expected to coincide with the fractal di-
mension of red bonds [13] in the zero-state Potts span-
ning clusters [8]. Such a dimension should remain unal-
tered whether or not the cluster backbone is supposed to
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connect points on the boundary [14]. For d =3 we find
Toyr=1.7310.05, d=2.9+0.1, and y , =2.24 +0.08. In
the bulk we find 7=1.40+0.05, y=1.6110.04, and
d =2.910.1. 7, is thus closer than 7 to its MF value.

Avalanches starting on the border of the ASM with the
Dirichlet BC give extra simplifications compared to the
bulk ones. One can indeed argue that, if toppling first
starts on A, no sites of the avalanche will undergo multi-
ple topplings [15]. Thus, in this case there is no distinc-
tion between s and m distributions. This corroborates the
expectation that in general 7=r,,, in the bulk too, as sug-
gested by numerical results [16].

Within our accuracy, we verified that, at a face or side
satisfying Neumann conditions, 7, could even coincide
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FIG. 1. (a) Data collapse for Pg, (s,L)= f P (s',L)ds' of
the 2D ASM. P!, is scaled by LI7~D=p 1.04 clzorresponding to
Ter=1.52 and d=2. For convenience not all data points are
drawn. A direct estimate of d based on the log-log fitting of the
radius of gyration data versus s gives d~1.9740.06. (b) Plots
for P;,. and P'(s,L)= f P(s',L)ds’, with rescaling correspond-
ing to bulk 7 and d values; surface data clearly do not collapse
in this case. Bulk data points are not drawn explicitly. Loga-
rithms are natural.

with the bulk 7. For example, an accurate determination
in 2D gave 7 ,,=1.27+0.05 and yg,=1.411+0.05 with
this BC. This result suggests that, for ASM models, the
two types of BC considered do not determine universal
exponents, and the MF result y,=v, 7, =7 for the Neu-
mann BC could hold also in finite d. This last possibility
is rather intriguing, because it would imply that the pres-
ence of the closed border does not alter avalanche scal-
ing. Of course, further and more extensive numerical
work will be needed to possibly corroborate this conjec-
ture.

As an example of a non-Abelian sandpile on which to
base the study of boundary critical scaling, we chose the
restricted critical Laplacian model (CLM), which has
been clearly established to belong to a universality class
different from that of the ASM [10]. Also for this model,
where toppling at site i requires that both z; and the La-
placian (V?%z); =212-dzj —2dz; simultaneously exceed
thresholds, in 2D we found clear evidence of surface scal-
ing distinct from bulk scaling. We applied the Dirichlet
BC and the convention that the Laplacian at boundary
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FIG. 2. (a) and (b) Same as in Figs. 1(a) and 1(b) for the 2D
restricted CLM.
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sites is computed by assuming a fictitious nearest neigh-
bor site with z =0 outside the system. As illustrated also
in Fig. 2, we got 7,,=1.62+0.06, y . =1.9710.03, and
d=1.931+0.05, to be compared with 7=1.31%0.04,
y=1.481+0.03, and d=1.94£0.04 in the bulk. Also in
this case, when replacing the Dirichlet with the Neu-
mann BC, the values of surface exponents become
different and closer to the bulk ones. Indeed, we got in
this case 7,,,=1.40£0.06 and y,, =1.55+0.05.
Summarizing, we have provided analytical and numeri-
cal evidence that SOC models, with dissipative BC,
display peculiar surface scaling in their avalanche distri-
butions. This shows that the SOC state mimics the struc-
ture of the ordinary critical state in a more complete way
than has generally been realized. The existence of bound-
ary scaling, which amounts to a sort of scaling correction
for bulk behavior, should be taken into account, especial-
ly when analyzing results for relatively small samples. It
should also be remembered that, for SOC, the fully
periodic BC often used in spin problems to get rid of
boundary effects would not make sense. The same ap-
plies to the Neumann BC’s which, especially in the Abeli-
an case, were found here to induce surface exponents
very close, if not identical, to the bulk ones. Similar con-
siderations can be made concerning the phenomenologi-
cal analysis of SOC, e.g., in earthquakes. For example,
taking into account the possible presence of geologically
relevant boundaries in the selection of seismic events
could prove important for the discussion of Gutenberg-

Richter law exponents [3].

The existence of a well defined surface scaling in SOC
also provides an unexpected expansion of the field in
which theory and experiments should be compared.
Thinking of the recent advances in the context of 2D
equilibrium statistical models [17], for example, we can
only foresee accelerated progress and a deeper under-
standing from such an expansion. By simultaneously
focusing on both bulk and surface scalings, many univer-
sality issues have a better chance to be settled, at least at
the numerical level.

Note added. After we submitted the present article, a
paper appeared [E. V. Ivashkevich, D. V. Ktitarev, and
V. B. Priezzhev, J. Phys. A 27, L585 (1994)], in which
Teur =7 is predicted exactly for the ASM with the Diri-
chlet BC on a 2D lattice. The derivation of Ivashkevich
et al., besides using very plausible scaling assumptions, is
based on an extension of the mapping of recurrent ASM
configurations onto spanning trees [8]. Another impor-
tant ingredient is the fact, also shown here, that in a
boundary avalanche with the Dirichlet BC every site top-
ples at most once. Our numerical estimate is pretty con-

=23

sistent with 7, ==.
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